TUJUAN PEMBELAJARAN
1. Siswa dapat membedakan relasi dan fungsi
2. Siswa dapat menentukan rumus fungsi
3. Siswa dapat menentukan banyaknya pemetaan (fungsi)
4. Siswa dapat membedakan fungsi dan korespondensi satu-satu
5. Siswa dapat menentukan banyaknya korespondensi satu-satu
Fungsi (pemetaan) merupakan relasi dari himpunan A ke himpunan B, jika setiap anggota himpunan A berpasangan tepat satu dengan anggota himpunan B. Semua anggota himpunan A atau daerah asal disebut domain, sedangkan semua anggota himpunan B atau daerah kawan disebut kodomain. Hasil dari pemetaan antara domain dan kodomain disebut range fungsi atau daerah hasil. Sama halnya dengan relasi, fungsi juga dapat dinyatakan dalam bentuk diagram panah, himpunan pasangan berurutan dan dengan diagram Cartesius.

Jadi, dari diagram panah di atas dapat disimpukan:
Domain adalah A = {1,2,3}
Kodomain adalah B = {1,2,3,4}
Range fungsi = {2,3,4}
Sebuah fungsi dapat dinotasikan dengan huruf kecil sepeti f, g, h. Misal, fungsi f memetakan himpunan A ke himpunan B dinotasikan f(x) dengan aturan f : x → 3x+3. Artinya fungsi f memetakan x ke 3x+3. Jadi daerah bayangan x oleh fungsi f adalah 3x+3 sehingga dapat dinotasikan dengan f(x) = 3x+3. Dari uraian ini dapat dirumuskan:
Jika fungsi f : x → ax +b dengan x anggota domain f , maka rumus fungsif adalah f(x) = ax+b
Dengan menghitung nilai fungsi, kita dapat mengetahui nilai fungsi yang dapat menghasilkan himpunan kawan (kodomain) dari himpunan asal (domain).
Contoh :
Diketahui fungsi f : x → 3x + 3 pada himpunan bilangan bulat. Tentukan:
- f(3)
- bayangan (-2) oleh f
- nilai f untuk x = -4
- nilai x untuk f(x) = 6
- nilai a jika f(a) = 12
Jawab
Fungsi f : x → 3x + 3
Rumus fungsi: f(x) = 3x+3
- f(3) = 3(3)+3 = 12
- bayangan (-2) oleh f sama dengan f (-2), jadi f(-2) = 3(-2)+3 = -3
- nilai f untuk x = -4 adalah f (-4) = 3(-4)+3 = -9
- nilai x untuk f(x) = 6 adalah
3x + 3 = 6
3x = 6-3
3x = 3
x = 1
5. nilai a jika f(a) = 12
3a + 3 = 12
3a = 12 – 3
3a = 9
a = 3
Korespondensi satu-satu
https://youtu.be/lHEQ0IwqaiI